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Introduction

Xiao et al. [1] proposed an interesting hybrid LES/RANS method in which they solve the RANS and
LES equations in the entire computational domain. They couple the two solutions through drift terms.
Near walls, drift terms are added to the LES equations so that the time filtered LES quantities (velocity,
modeled turbulent quantities) agree with the time filtered RANS quantities. Away from the walls, drift
terms are added to the RANS equations so that the time-filtered RANS quantities agree with the time-
filtered LES quantities. In the present work this method is simplified and used as a hybrid RANS-LES
method, a wall-modeled DES. The new method is called S-DES.

The Hybrid S-RANS/LES methodology

The domain is split into a steady RANS region (S-RANS) and LES region (LES), see Fig. 1a. Two sets of
equations (steady RANS and unsteady DES) are solved in the entire domain on identical grids although
the S-RANS mesh may be two dimensional (as in the present work). Drift terms are added

• in the LES equations, SLES
i , in the S-RANS region and

• in the RANS equations, SRANS
i , in the LES region

which read

SLES
i =

vRANS
i − 〈v̄LES

i 〉T
∆t

, SRANS
i =

〈vLES
i 〉T − vRANS

i

∆t
(1)

Subscript T indicates integration over time T

〈φ(t)〉T =
1

T

∫ t

−∞

φ(τ) exp(−(t− τ)/T )dτ ⇒ 〈φ〉tT ≡ 〈φ〉T = a〈φ〉t−∆t
T + (1− a)φt (2)

where a = exp(−∆t/T ). Note that although the flow cases include homogeneous direction, no space
averaging is made in Eq. 2.

The present method is similar to those in [1–3]. The main differences are that
• in [1, 3] they use two drift terms in the LES momentum equations to ensure that the resolved
Reynolds stresses are equal (similar) to the modeled ones in the RANS equations. Here we use only
one. They include drift terms also in the k and ε equations [1] or the k equation [3].

• in [1, 3] they include tuning constants in all drift terms. Here we use no tuning constant.

The k − ω Model
The Wilcox k − ω turbulence model is used in both the LES and RANS regions.
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The DES k − ω Model
The DES equations are solved in the entire region, but they govern the flow only in the LES region, see
Fig. 1a. In the RANS regions, the lengthscale in Eq. 3 is computed as ℓt = k1/2/(Cµω) and in the LES
region it is taken from the IDDES model [4], i.e.

ℓt = CLES∆dw, ∆max = max{∆x,∆y,∆z}, ∆dw = min (max [Cdwdw, Cw∆max,∆nstep] ,∆max) (4)

The RANS k − ω EARSM Model
The steady RANS equations are solved in the entire region, but they govern the flow only in the RANS
region, see Fig. 1a. The Reynolds stresses, v′iv

′

j , are computed from the two-dimensional explicit algebraic
Reynolds stress model (EARSM) [5]

Numerical procedure

The simulations are initialized as follows:
• The 2D RANS equations are solved
• Anisotropic synthetic fluctuations are superimposed to the 2D RANS field which gives the initial
LES velocity field. The initial 〈vLES

i 〉T is set from the 2D RANS field.
The RANS solver is called every 10th timestep which means that the additional computing time is
negligible.
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(a) S-RANS and LES regions with j0 cells.

x
=

−
2
.1

x
=

0

x
=

1

y = h

x
=

4

(b) The domain of the hump. zmax = 0.2.
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(a) Channel flow. Velocity. T =
10δ/Ub : DES; : RANS;
◦: DNS. Vertical black lines show
locations of δS−RANS.
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(b) Hump flow. Pressure coeffi-
cient. : j0 = 33; : j0 =
53;
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(c) Hump flow. Skinfriction.
: j0 = 33; : j0 = 53;
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Figure 3: Hump flow. T = 20h/Ub. 〈v̄1〉 velocities. : S-DES, j0 = 33; : S-DES, j0 = 53;
: pure DES; ◦: exp

Results

The first test case is fully developed channel flow with periodic boundary conditions in streamwise (x)
and spanwise (z) directions. The Reynolds number, Reτ = uτδ/ν, is 5 200 where δ denotes half-channel
width. The size of the domain is xmax = 3.2, ymax = 2 and zmax = 1.6. The mesh has 32 × 96× 32 (x,
y, z) cells. Figure 2a shows the velocity profiles for S-DES for three locations of δS−RANS and pure DES
simulations for two locations of δS−RANS. The three S-DES give no log-law mismatch whereas the two
pure DES give a small log-law mismatch.

The second test case is the flow over a two-dimensional hump, see Fig. 1b. The Reynolds number of
the hump flow is Rec = 936 000. The mesh has 386 × 120 × 32 cells (x, y, z) and it is taken from the
NASA workshop.1 The inlet is located at x = −2.1 and the outlet at x = 4.0, see Fig. 1b.

The inlet profiles are taken from a separate 2D RANS simulation with the same momentum thickness
as the experimental velocity profiles. Anisotropic synthetic fluctuations are superimposed to the inlet
velocity profile. Periodic boundary conditions are used in the spanwise direction (z). The interface
between the S-RANS domain and the LES domain is defined along a gridline. Two different locations of
δS−RANS are evaluated below: j0 = 33 and 53 which correspond to y+ = 50 and 250, respectively, at the
inlet. The integration time-scale is set to T = 20δ/Ub. Some results are presented in Figs. 2b, 2c and 3.
As can be seen, the agreement with experiments is good for S-DES much not so good for pure DES. The
integration time, T , for S-DES is close to the minimum value (T = 5 is too low).

In the full paper the strengths and weaknesses of the model will be analyzed.

1https://turbmodels.larc.nasa.gov/nasahump val.html
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