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Gas turbine engines (GT) are the backbone of aircraft propulsion, power generation, and mechanical drive in a 

range of applications, and they will still be used in the foreseeable future. The main reason for GT success is their thrust 

and power per unit engine weight, their good efficiency and low emissions, and the ability to adjust to rapidly varying 

loads, as often required by the interaction with renewable resources. It is instructive to remind that in the US alone the 

GT natural gas and oil burn summed up to 27×1012 cubic feet and 6.3×109 barrel of oil equivalent respectively in 2015 

[1]. At current fuel prices, any small gas turbine performance improvement can result in a multi-billion-dollar economic 

impact. Moreover, this will also come with a significant CO2 emission benefit.  

In general, GT fuel burn can be better understood by observing how performance is governed by four different 

efficiencies [2]: Thermodynamic efficiency, which is directly proportional to pressure ratio and firing temperature, 

Aerodynamic efficiency, that measures the quality of the process of imparting and extracting energy from the working 

fluid, and guarantee operability range applied to compressor, high-pressure and low-pressure turbines, Thermal 

efficiency, that accounts for the internal and external cooling requirements and cavities purge of GT the firing 

temperatures of which are often above material capabilities, Propulsive efficiency, that applies specifically to GT for 

aircraft propulsion, measures the quality of the process of generating thrust and it is inversely proportional to the fan 

pressure ratio, and directly proportional to the volume flow.  

In the engine component design phase, the prediction of efficiency, operability, cooling and purge systems, fan 

and nacelle aerodynamics is always heavily CFD assisted. Nowadays, the wide multidisciplinary range of turbomachinery 

design tools need to balance speed and accuracy. For aerodynamics, thermal, and aeromechanics CFD currently cannot 

compete with the speed of empirical 0D and 1D correlations. Such correlations, that condense proprietary company 

knowledge and experience, are and will be an essential part of the design process. Expensive testing is still required to 

improve design correlations as well as evolve and certify the design of both components and full engines. Tests 

essentially overcome the inherent weakness of simplified design correlations. In this scenario, it is partly due to the 

computer performance and availability improvement over the last decades that CFD evolved to become essential in 

turbomachinery design.  

Despite its attractiveness due to the relatively low cost when comparing with design iterations assisted by 

testing, CFD potential is not fully exploited due to the well-known deficiencies and lack of thorough validation across 

the design space and operating conditions envelope [2, 3]. The flow in turbomachines is complex due its unsteady 

nature, both deterministic, due to alternating stages of stationary and rotating components, and chaotic due to 

turbulence, not to mention the large-scale unsteadiness that evolves in presence of stalls or shock-boundary layer 

interaction. The concerted action of deterministic and chaotic unsteadiness impacts aerodynamic performance, fuel 

burn, and reliability. Moreover, the different airfoil shapes, frame changes, range of Reynolds and Mach numbers, high 

temperatures and pressures as well as uncertainties due to manufacturing deviation from the design intent and 

transient missions make the analysis and validation of CFD prediction very challenging. Nevertheless, it is documented 

that RANS assisted design methods contributed and are still contributing to GT performance improvement and 

reduction in testing of high-pressure compressor [3]. Still, the current literature on the topic indicates that RANS and 

URANS model development has plateaued mostly because of shortcoming in the turbulence physics modeling 

approaches. Data taken in experimental testing may provide the “what”, namely the performance of a turbine stage, 

but not the “why” due to the inability to dissect the range of physical phenomena impacting a design. In addition, they 

cannot provide enough data to drive the development of computational models that should mimic the physical 

mechanisms governing aero-thermo-mechanical performance.  

DNS and LES do help by providing “virtual test data” with accuracy and details appropriate to provide the “why” 

and guide both design improvements and CFD model maturation. This lecture will illustrate how GE is focusing on 

improvements to the CFD ecosystem with the help of scale-resolving CFD, like DNS and LES, to analyze the flow physics 
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in Low-Pressure-Turbines, investigating the impact of a range of design parameters [4, 5], like Reynolds number, 

aerodynamic load, flow coefficient, reduced frequency, axial gaps, and the impact they may have on performance and 

unsteady excitation. For example, Figure 1 shows two phase-locked averaged snapshots of the turbulent kinetic energy 

in an LPT blade passage with two combinations of flow coefficient, , and reduced frequency, Fred which impact losses, 

proportional to local production of turbulent kinetic energy, and unsteadiness, proportional to the residual incoming 

wake strength.    

                 

Low Fred, medium .                    High Fred, low . 

Figure 1. Turbulent kinetic energy production in the vane of a low-pressure turbine; impact of design choices (=flow coefficient, 
Fred=reduced frequency) [4]. 

The analysis extends to High-Pressure-Turbines tackling the problem of loss generation and heat transfer [6, 7] 

in the critical pressure trailing edge cooling region. Figure 2 shows a snap-shot of the instantaneous temperature field 

in an idealized pressure-side slot geometry with cooling ejection, typical of small high-pressure-turbines trailing edges, 

predicted by LES. The LES results compare well with measurements, and they are also used to improve Reynolds 

averaged models by introducing non-linear constitutive laws machine-learnt from the LES data-base, as shown in Figure 

2 bottom. 

 

 

Figure 2. Snap-shot of the temperature flow field in an HPT trailing edge slot-like geometry in presence of cooling ejection predicted 

by LES (top), and adiabatic effectiveness () prediction improvement by LES and Machine-Learnt RANS models (bottom) [7]. 

 

Axial compressor flows are also of critical, in particular the prediction of off-design performance that controls 

the overall operability range of a GT. The prediction of the flow in axial compressors at off-design conditions was 

investigated in [8]. Figure 3 shows a snap-shot of the instantaneous span-wise vorticity for positive incidence with a 

clear tendency of the suction side boundary layer to develop intermittent separations. LES loss predictions agree well 

with data, as well as RANS (see Figure 3) suggesting that for the compressor midspan section a simple turbulence model 

is probably adequate to predict the main flow features. 
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Figure 3. LES of an axial compressor at positive incidence (left) and loss predictions for a typical incidence range from test, LES and 
RANS (right) [8]. 

In a further attempt to improve RANS, GE is also focusing on analytic turbulence model assessment [9, 10], 

model improvement by Machine-Learning applied not only to high-pressure turbines [7], but also to the prediction of 

the wake decay in low-pressure turbines [11], and on the application of non-conventional post-processing to scale-

resolved simulations by POD [12] to extract information of the physics that drives the growth of irreversibility. Figure 4 

shows a typical POD mode decomposition of the unsteady flow in a low-pressure turbine with discrete incoming wakes 

generated by moving bars, and how it is possible to associate losses to each mode in specific flow regions of interest. 

Such analysis is of importance to understand the details of the loss generation mechanism and to drive attention to 

efficiency top offenders. 

 

 

 

     

Figure 4. POD mode decomposition of the flow in a low-pressure-turbine with discrete incoming wakes (top), and cumulative 
contribution to losses split in different flow regions (bottom) [12]. 

 

In conclusion, there is a broad range of areas in turbomachinery design where scale-resolved computer 

simulations are having a significant impact, through better understanding of the complex flow field and by improving 

lower order turbulence models, that are routinely used in the design phase. 
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